Difference between revisions of "ESM Math Library"
Jump to navigation
Jump to search
imported>JustTim |
imported>JustTim |
||
Line 1: | Line 1: | ||
Welcome to the Stage Function Repository! The goal of the Repository is, to create a huge database of available functions all using the method descripted in the article [[Simulating_new_functions|Simulating new functions]]. | === Welcome === | ||
to the Stage Function Repository! The goal of the Repository is, to create a huge database of available functions all using the method descripted in the article [[Simulating_new_functions|Simulating new functions]]. | |||
If you've written such a function and you think it might be helpful to others, don't hesitate to contribute to this repository. | If you've written such a function and you think it might be helpful to others, don't hesitate to contribute to this repository. | ||
=== First Steps === | |||
To get this up and running follow there simple setup steps: | |||
* Open any Plugin you wish or create a new one with the Construction Set | |||
* Create a new Quest called "f" (yes, just the letter "f", nothing more) | |||
* Activate the Checkbox "Allow repeated stages". (This is VERY important!!) | |||
* Create a new Quest Script and copy the whole content of the "Quest Script" section from this article into this script. Don't forget to attach it to your f-Quest! | |||
* Create a new stage in this quest for each function you want to use from this repository and copy all code from it's section in this article to the related Result Script textbox. Make sure to select the right stage number for the function. | |||
* That's it! You should be able to use them now! | |||
=== Quest Script === | === Quest Script === | ||
Line 78: | Line 88: | ||
End</pre> | End</pre> | ||
=== | === Stage 5: Square Root === | ||
Based on [[Square_Root|Square Root]] Article | Based on [[Square_Root|Square Root]] Article | ||
<pre>;FUNCTION float sqrt(float input) | <pre>;FUNCTION float sqrt(float input) | ||
Line 93: | Line 103: | ||
endif</pre> | endif</pre> | ||
=== | === Stage 10: Hypotenuse === | ||
<pre>;FUNCTION float Hypotenuse(float CathetusA, float CathetusB) | <pre>;FUNCTION float Hypotenuse(float CathetusA, float CathetusB) | ||
Line 102: | Line 112: | ||
;fout is already the result</pre> | ;fout is already the result</pre> | ||
=== | === Stage 15: Sin Cos Tan === | ||
Based on [[Trigonometry_Functions|Trigonometry Functions]] Article | Based on [[Trigonometry_Functions|Trigonometry Functions]] Article | ||
<pre>;FUNCTION float,float,float SinCosTan(float Angle) | <pre>;FUNCTION float,float,float SinCosTan(float Angle) | ||
Line 141: | Line 151: | ||
set f.fout3 to (f.sin/f.cos) ;tan</pre> | set f.fout3 to (f.sin/f.cos) ;tan</pre> | ||
=== | === Stage 16: Sin Cos Tan 2 === | ||
Based on [[Trigonometry_Functions|Trigonometry Functions]] Article | Based on [[Trigonometry_Functions|Trigonometry Functions]] Article | ||
<pre>;FUNCTION float,float,float SinCosTan(float Angle) | <pre>;FUNCTION float,float,float SinCosTan(float Angle) | ||
Line 165: | Line 175: | ||
set f.fout3 to f.sin/f.cos ;tan</pre> | set f.fout3 to f.sin/f.cos ;tan</pre> | ||
=== | === Stage 20: Arcsine === | ||
Based on [[Trigonometry_Functions|Trigonometry Functions]] Article | Based on [[Trigonometry_Functions|Trigonometry Functions]] Article | ||
<pre>;FUNCTION float Arcsine(float sin) | <pre>;FUNCTION float Arcsine(float sin) | ||
Line 184: | Line 194: | ||
set f.fout to f.rad*(1.5707963-f.n*(1.5707288-0.2121144*f.sin+0.0742610*f.sin*f.sin-0.0187293*f.sin*f.sin*f.sin))</pre> | set f.fout to f.rad*(1.5707963-f.n*(1.5707288-0.2121144*f.sin+0.0742610*f.sin*f.sin-0.0187293*f.sin*f.sin*f.sin))</pre> | ||
=== | === Stage 21: Arcsine 2 === | ||
Based on [[Trigonometry_Functions|Trigonometry Functions]] Article | Based on [[Trigonometry_Functions|Trigonometry Functions]] Article | ||
<pre>;FUNCTION float Arcsine(float sin) | <pre>;FUNCTION float Arcsine(float sin) | ||
Line 199: | Line 209: | ||
set f.fout to (f.fin1 + (1/2)*(t3/3) + (3/8)*(t5/5) + (15/48)*(t7/7) )</pre> | set f.fout to (f.fin1 + (1/2)*(t3/3) + (3/8)*(t5/5) + (15/48)*(t7/7) )</pre> | ||
=== | === Stage 22: Aroccosine === | ||
Based on [[Trigonometry_Functions|Trigonometry Functions]] Article | Based on [[Trigonometry_Functions|Trigonometry Functions]] Article | ||
<pre>;FUNCTION float Arccosine(float cos) | <pre>;FUNCTION float Arccosine(float cos) | ||
Line 205: | Line 215: | ||
set f.fout to ((f.pi / 2) - f.fout)</pre> | set f.fout to ((f.pi / 2) - f.fout)</pre> | ||
=== | === Stage 23: Arccosine 2 === | ||
Based on [[Trigonometry_Functions|Trigonometry Functions]] Article | Based on [[Trigonometry_Functions|Trigonometry Functions]] Article | ||
<pre>;FUNCTION float Arccosine(float cos) | <pre>;FUNCTION float Arccosine(float cos) | ||
Line 211: | Line 221: | ||
set f.fout to ((f.pi / 2) - f.fout)</pre> | set f.fout to ((f.pi / 2) - f.fout)</pre> | ||
=== | === Stage 24: Arctan === | ||
Based on [[Trigonometry_Functions|Trigonometry Functions]] Article | Based on [[Trigonometry_Functions|Trigonometry Functions]] Article | ||
<pre>;FUNCTION float Arctan(float tan) | <pre>;FUNCTION float Arctan(float tan) | ||
Line 226: | Line 236: | ||
set f.fout to (f.fin1 - (f.t3/3) + (f.t5/5) - (f.t7/7))</pre> | set f.fout to (f.fin1 - (f.t3/3) + (f.t5/5) - (f.t7/7))</pre> | ||
=== | === Stage 30: getAngle === | ||
<pre>;FUNCTION float getAngle(float x, float y) | <pre>;FUNCTION float getAngle(float x, float y) | ||
Revision as of 12:53, 9 May 2006
Welcome
to the Stage Function Repository! The goal of the Repository is, to create a huge database of available functions all using the method descripted in the article Simulating new functions. If you've written such a function and you think it might be helpful to others, don't hesitate to contribute to this repository.
First Steps
To get this up and running follow there simple setup steps:
- Open any Plugin you wish or create a new one with the Construction Set
- Create a new Quest called "f" (yes, just the letter "f", nothing more)
- Activate the Checkbox "Allow repeated stages". (This is VERY important!!)
- Create a new Quest Script and copy the whole content of the "Quest Script" section from this article into this script. Don't forget to attach it to your f-Quest!
- Create a new stage in this quest for each function you want to use from this repository and copy all code from it's section in this article to the related Result Script textbox. Make sure to select the right stage number for the function.
- That's it! You should be able to use them now!
Quest Script
ScriptName FunctionQuestScript ; Internals short doOnce float fQuestDelayTime ; Constants float pi float rad ; Function In- and Output float fin1 float fin2 float fin3 float fout float fout2 float fout3 ;S5 FUNCTION sqrt float sqr ;S10 FUNCTION Hypotenuse ;float sqr float n ;S15 FUNCTION SinCosTan 1 float ang float sin float cos float tan float exp ;S16 FUNCTION SinCodTan 2 ;float ang ;float sin ;float cos float t1 float t2 float t5 float t6 ;S20 FUNCTION Arcsine 1 ;float sin ;float ang ;float n ;S21 FUNCTION Arcsine 2 float t3 ;float t5 float t7 ;S22 FUNCTION Arccosine 1 ;S23 FUNCTION Arccosine 2 ;S24 FUNCTION Arctan ;float t3 ;float t5 ;float t7 ;S30 FUNCTION getAngle float tan ;float ang ; Set constants first Begin Gamemode if doOnce == 0 set pi to 3.1415927 set rad to 180.0/pi set fQuestDelayTime to 30 set doOnce to 1 endif End
Stage 5: Square Root
Based on Square Root Article
;FUNCTION float sqrt(float input) if (f.fin1 <= 0) set f.fout to 0 else set f.sqr to f.fin1/2 set f.sqr to (f.sqr+(f.fin1/f.sqr))/2 set f.sqr to (f.sqr+(f.fin1/f.sqr))/2 set f.sqr to (f.sqr+(f.fin1/f.sqr))/2 set f.sqr to (f.sqr+(f.fin1/f.sqr))/2 set f.sqr to (f.sqr+(f.fin1/f.sqr))/2 set f.fout to f.sqr endif
Stage 10: Hypotenuse
;FUNCTION float Hypotenuse(float CathetusA, float CathetusB) set f.n to ((f.fin1 * f.fin1) + (f.fin2 * f.fin2)) ;FUNCTION float sqrt(float input) set f.fin1 to f.n setStage f 5 ;fout is already the result
Stage 15: Sin Cos Tan
Based on Trigonometry Functions Article
;FUNCTION float,float,float SinCosTan(float Angle) ;Taylor Series Variant 1 - script by Galerion set f.ang to f.fin1 if f.ang < -180 set f.ang to (f.ang + 360) elseif f.ang > 180 set f.ang to (f.ang - 360) endif ;approximate set f.ang to (f.ang/f.rad) set f.cos to 1 set f.exp to f.ang set f.sin to f.exp set f.exp to (f.exp * f.ang) set f.cos to (f.cos - f.exp / 2) set f.exp to (f.exp * f.ang) set f.sin to (f.sin - f.exp / 6) set f.exp to (f.exp * f.ang) set f.cos to (f.cos + f.exp / 24) set f.exp to (f.exp * f.ang) set f.sin to (f.sin + f.exp / 120) set f.exp to (f.exp * f.ang) set f.cos to (f.cos - f.exp / 720) set f.exp to (f.exp * f.ang) set f.sin to (f.sin - f.exp / 5040) set f.exp to (f.exp * f.ang) set f.cos to (f.cos + f.exp / 40320) set f.exp to (f.exp * f.ang) set f.sin to (f.sin + f.exp / 362880) set f.fout to f.sin set f.fout2 to f.cos set f.fout3 to (f.sin/f.cos) ;tan
Stage 16: Sin Cos Tan 2
Based on Trigonometry Functions Article
;FUNCTION float,float,float SinCosTan(float Angle) ;Taylor Series Variant 2 - script by JOG set f.ang to f.fin1 if f.ang < -180 set f.ang to f.ang + 360 elseif f.ang > 180 set f.ang to f.ang - 360 endif set f.t1 to (f.ang/f.rad) set f.t2 to (f.t1*f.t1) set f.t5 to (f.t2*f.t2*f.t1) set f.t6 to (f.t5*f.t1) set f.sin to (f.t1 - (f.t1*f.t2/6) + (f.t5/120) - (f.t5*f.t2/5040) + (f.t6*f.t2*f.t1/362880)) set f.cos to (1 - (f.t2/2) + (f.t2*f.t2/24) - (f.t6/720) + (f.t6*f.t2/40320)) set f.fout to f.sin set f.fout2 to f.cos set f.fout3 to f.sin/f.cos ;tan
Stage 20: Arcsine
Based on Trigonometry Functions Article
;FUNCTION float Arcsine(float sin) ;Abramowitz/Stegun Approximation - script by JOG float sin float ang float n set f.sin to f.fin1 set f.n to 1 - f.sin set f.ang to f.n/2 set f.ang to (f.ang+(f.n/f.ang))/2 set f.ang to (f.ang+(f.n/f.ang))/2 set f.ang to (f.ang+(f.n/f.ang))/2 set f.n to (f.ang+(f.n/f.ang))/2 set f.fout to f.rad*(1.5707963-f.n*(1.5707288-0.2121144*f.sin+0.0742610*f.sin*f.sin-0.0187293*f.sin*f.sin*f.sin))
Stage 21: Arcsine 2
Based on Trigonometry Functions Article
;FUNCTION float Arcsine(float sin) ;Approximation by Taylor Series - script by DragoonWraith float t3 float t5 float t7 set f.t3 to (f.fin1 * f.fin1 * f.fin1) set f.t5 to (f.t3 * f.fin1 * f.fin1) set f.t7 to (f.t5 * f.fin1 * f.fin1) set f.fout to (f.fin1 + (1/2)*(t3/3) + (3/8)*(t5/5) + (15/48)*(t7/7) )
Stage 22: Aroccosine
Based on Trigonometry Functions Article
;FUNCTION float Arccosine(float cos) setStage f 20 ;Call Arcsine with same input set f.fout to ((f.pi / 2) - f.fout)
Stage 23: Arccosine 2
Based on Trigonometry Functions Article
;FUNCTION float Arccosine(float cos) setStage f 21 ;Call Arcsine with same input set f.fout to ((f.pi / 2) - f.fout)
Stage 24: Arctan
Based on Trigonometry Functions Article
;FUNCTION float Arctan(float tan) ;Approximation by Taylor Series - script by DragoonWraith float t3 float t5 float t7 set f.t3 to (f.fin1 * f.fin1 * f.fin1) set f.t5 to (f.t3 * f.fin1 * f.fin1) set f.t7 to (f.t5 * f.fin1 * f.fin1) set f.fout to (f.fin1 - (f.t3/3) + (f.t5/5) - (f.t7/7))
Stage 30: getAngle
;FUNCTION float getAngle(float x, float y) set f.tan to (f.fin1/f.fin2) if f.tan >1 || f.tan < -1 set f.tan to (f.fin2/ -f.fin1) if f.fin1 >= 0 set f.ang to 90 else set f.ang to -90 endif else if f.fin2 >= 0 set f.ang to 0 else set f.ang to 180 endif endif set f.fin1 to f.tan setStage f 24 ;Call Arctan if f.fout > (f.pi/2) set f.fout to (f.pi/2) elseif f.fout < (f.pi/ -2) set f.fout to (f.pi/ -2) endif set f.fout to ((f.fout*f.rad) + f.ang)